

Antimicrobial Potential of Polyphenol-Containing Medicinal Plants: A Study on the Antibiotic-Resistant Staphylococcus aureus from Cattle and Poultry Farms

Md Nannur Rahman^{1,2}, Farhana Akther¹, Arif Ahmed¹, Nilakshi Barua² and Margaret Ip*²

¹ Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh.

> ² Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China. *Corresponding author: margaretip@cuhk.edu.hk

Introduction

Livestock-associated methicillin-resistant S. aureus (MRSA) poses significant implications for animal and public health. Alternative treatments for MRSA are necessary to reduce the health burden. A polyphenolcontaining medicinal plant would be a solution.

Objectives

- To determine the prevalence of antibiotic-resistant S. aureus among poultry and cattle farm samples
- To explore the antimicrobial effects of polyphenolcontaining plant extracts against antibiotic-resistant S. aureus

Methodology

Poultry and cattle farm selection and sample collection

Enrichment, culture and isolation of S. aureus

Determination of the cefoxitin (30 µg) resistance pattern of the isolates using the disk diffusion method

Selection of polyphenol-rich medicinal plants through review and methanolic extraction of polyphenols

Assessment of antimicrobial activity of the extract against cefoxitin-resistant S. aureus

Results

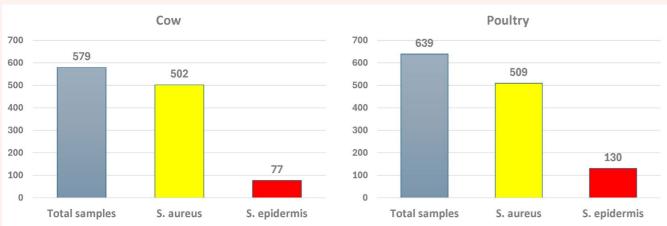


Figure 1: recovery of S. aureus (yellow colonies) from poultry and cow farm samples.

Table 1: Coagulase-positive S. aureus among the presumptive yellow conies

Sample	Presumptive S.	Coagulase	(%)
	aureus (Yellow	Positive S.	
	Colony)	aureus	
Poultry	104	83	80.0
(125)			
Cow (125)	91	75	82.41

Acknowledgement: We thank the Alliance of International Science Organizations (ANSO) (Project No.: ANSOCR-PP-2022-09 (PI to MI) for funding.

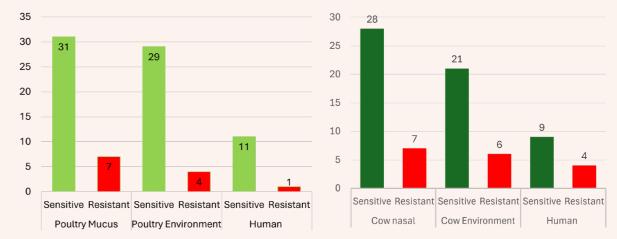


Figure 2: Cefoxitin (30 μg) susceptibility test to S. aureus recovered from poultry and cow farm samples. A zone of inhibition with a diameter of ≤19 mm around a 30-µg cefoxitin disk is generally methicillin-resistant interpreted as according to the CLSI. Figure 2 showed that 17% of S. aureus from poultry and 23% S. aureus from cow farms samples were methicillin-resistant.

Table 2: Polyphenol content of selected plants

Name of	Scientific name	Total phenolic content (μg/ml GAE)		
plant	Scientific frame			
Thankuni	Centella asiatica	281.52 ± 1.10^{a}		
Misri dana	Scoparia dulcis	278.16 ± 1.25^a		
Hatisur	Heliotropium indicum	$269.25\pm1.40^{\mathrm{a}}$		
Sajna	Moringa oleifera	305.40 ± 1.80^{b}		
Neem	Azadirachta indica	276.57 ± 1.25^{a}		

Table 2 shows the polyphenol content of the selected medicinal plants. A standard curve (R2) was constructed using a UV spectrophotometer. Moringa olifera contains the highest polyphenol. Table 3 shows that Moriga olifera highly inhibited the resistant S. aureus followed by Centella asiatica.

Table 3: Average inhibition zone (mm) of the plant extracts on the antibiotic-resistant S. aureus

		Average diameter of inhibition zone (mm)				
Name of isolate	Origin	Centella asiatica	Scopar ia dulcis	Heliotro pium indicum	Moringa oleifera	Azadi rachta indica
S. aureus	Animal	14±1ª	11±1 ^b	13±2ª	16±2ª	13±2ª
	Environm ent	14±2ª	11±2 ^b	12±2ª	16±2ª	12 ± 2 ^a
	Worker	13±1ª	11±1 ^b	11±1 ^b	16±1 ^a	11±1 ^b

Conclusion

The prevalence of MRSA among livestock is alarming. Polyphenol containing medicinal plants or herbs would be an alternative solution to the antibiotic resistance S. aureus.