

Effect of Carbapenem Exposure On The Fitness of

Extended Spectrum Beta-Lactamase (ESBL)-Producing

Escherichia coli Strains Isolated From Migrant

Communities Working in the Klang Valley, Malaysia **RES-256**

Muhammad Azreen Mat Husin¹, Adrian Anthony Pereira², Thana Seelan Somanathan², Ramliza Ramli³, Ilana Lopes Baratella da Cunha Camargo⁴, Sheila Nathan⁵, Hui-min Neoh^{1,6*}

¹UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Malaysia; ²North South Initiative (NSI), Malaysia; ³Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia, 4Sao Carlos Institute of Physics, University of Sao Paulo, Brazil; 5Faculty of Science and Technology (FST), Universiti Kebangsaan Malaysia, Malaysia; 6UKM Pakarunding Sdn. Bhd., Malaysia

Introduction

Silent carriage of Extended Spectrum Beta-Lactamase (ESBL)producing Escherichia coli (ESBLEC) is a risk factor for onward dissemination of the bacteria and host future infections. We investigated the effect of carbapenem exposure on the fitness of ESBLEC strains isolated from economic migrants of the Klang Valley, Malaysia.

Results

Figure 1 : ESBLEC carriage and AST results of tested strains

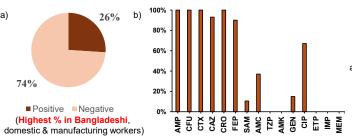


Table 1: Common AST profiles of tested strains

Most common AST profiles	No. of strains (%)
Ampicillin+ Cefuroxime + Cefotaxime + Ceftazidime + Ceftriaxone + Cefepime + Ciprofloxacin	14 (20.9)
Ampicillin+ Cefuroxime + Cefotaxime + Ceftazidime + Ceftriaxone + Cefepime	13 (19.4)
Ampicillin+ Cefuroxime + Cefotaxime + Ceftazidime + Ceftriaxone + Cefepime + Ampicillin/Sulbactam + Ciprofloxacin	12 (17.9)

Table 2: ESBL genotyping of tested strains

ESBL gene / genotype	N (%)
blaTEM	27 (40.3)
blaCTX-M-1	61 (91.0) Most prevalent ESBL gene
blaCTX-M-9	5 (7.4) among our study strains
blaOXA-1	15 (22.4)
ESBL genotype	
blaTEM	1 (1.5)
blaCTX-M-1	33 (49.3)
blaCTX-M-9	1 (1.5)
blaTEM + blaCTX-M-1	14 (20.9)
blaTEM + blaCTX-M-9	3 (4.5)
blaCTX-M-1 + blaOXA-1	7 (10.4)
blaCTX-M-9 + blaOXA-1	1 (1.5)
blaTEM + blaCTX-M-1 + blaOXA-1	7 (10.4)

Figure 2: ERIC-PCR analysis of strains with the most common AST profiles to select

Carried blaCTX-M

fingerprint in each

ESBLEC MG 32 ESBLEC MG 48 **ESBLEC MG 57**

Dominant ERIC

cluster

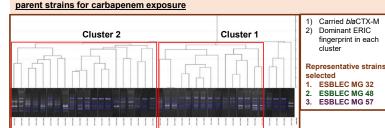
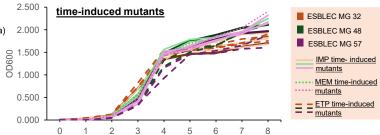
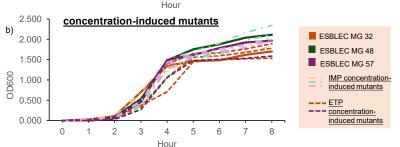


Table 3: Number of strains that survived carbapenem exposure

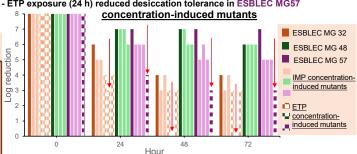

	Time based induction			Concentration based induction		
ESBLEC MG	32	48	57	32	48	57
IMP Induction	3	2	3	2	3	3
MEM Induction	0	1	1	0	0	0
ETP Induction	3	2	2	3	0	1
Total strains	6	5	6	5	3	4


ESBLEC identification (CHROMagar) and Participant recruitment antibiotic susceptibility testing (AST) Antibiotic exposure : and Enterobacterial Repetitive (IMP), meropenem (MEM) and ertapenem (ETP)) Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping Time based induction (24, 48 and 72 h with 1/2x MIC of representative strain selection tested strains) Concentration based induction Fitness test (1x. 2x and 1/2x MIC of tested Growth curve analysis strains in 24 hour)

Desiccation assay (24, 48 and 72 h)

Methodology

Figure 3: Growth curve analysis



-Similar growth trends for parent and mutants under both exposure conditions

Figure 4 : Desiccation assay analysis time-induced mutants ESBLEC MG 32 ESBLEC MG 48 ESBLEC MG 57 reduction IMP time-induced MEM time-induced Log <u>mutants</u> ETP time- induced mutants

- ETP exposure (24 h) reduced desiccation tolerance in ESBLEC MG57

- ETP exposure (1/2× MIC) reduced tolerance in ESBLEC MG57;

- ETP exposure (2× MIC) reduced tolerance in ESBLEC MG32

Conclusion

Our findings show the presence of ESBLEC in migrant communities and their phenotypic stability post-carbapenem exposure, posing a risk for forward antimicrobial resistance dissemination.

Acknowledgment Transdisciplinary Research Grant Scheme (TRGS/1/2022/UKM/02/8/1), NSI, migrant participants. *Correspondence: hui-min@hctm.ukm.edu.my; https://my.linkedin.com/in/huiminneoh