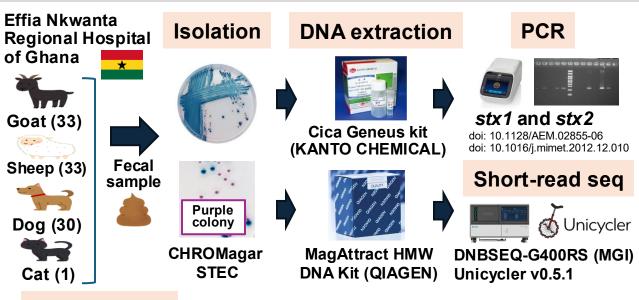
Whole-genome characterization of Shiga toxin-producing Escherichia coli isolated from Ghanaian livestock

Yusuke Ota a, Samiratu Mahazu a, Ivy Brago Amanor a, Frederick Ofosu Appiah a, Jennifer Amedior b, Emmanuel Darko b, Anthony Ablordey a and Ryoichi Saito a ^aDepartment of Molecular Microbiology and Immunology, Institute of Science Tokyo ^bDepartment of Bacteriology, Noguchi Memorial Institute for Medical Research

RES-212


Yusuke Ota

Email: y-ota.micr@tmd.ac.jp

BACKGROUND

Shiga toxin-producing Escherichia coli (STEC) is a pathogen zoonotic with notable public implications, and a One Health approach is required to understand its distribution and potential transmission. However, its prevalence and characteristics in livestock and companion animals remain underexplored in lowincome countries. In this study, we investigated the prevalence and genomic characteristics of STEC in these animals in the western region of Ghana and this is the first genomic report in the country.

MATERIALS AND METHODS

Data analysis

- SeroTypeFinder v2.0 (serotype)
- ResFinder v4.6.0 (resistance genes)
- VirulenceFinder v2.0. (virulence genes) (Maximum likelihood phylogenetic tree)
- MLST v2.0 (sequence type: ST)
- Roary v3.13.0 and IQ-TREE v2.3.0

RESULTS

Table 1. Positive rates of STEC from animals.

Species	STEC agar	stx1(+)/ stx2(+)	stx1(+)/ stx2(-)	stx1(-)/ stx2(+)
Goat (n=33)	6 (18.2%)	1 (3.0%)	1 (3.0%)	2 (6.1%)
Sheep (n=33)	9 (27.3%)	4 (12.1%)	0	0
Dog (n=30)	2 (6.7%)	0	0	0
Cat (n=1)	0	0	0	0
All (n=97)	17 (17.5%)	5 (5.2%)	1 (1.0%)	2 (2.1%)

17 (17.5%) tested positive for STEC agar and only samples from goats (12.1%) and sheep (12.1%) tested positive for stx.

CONCLUSION

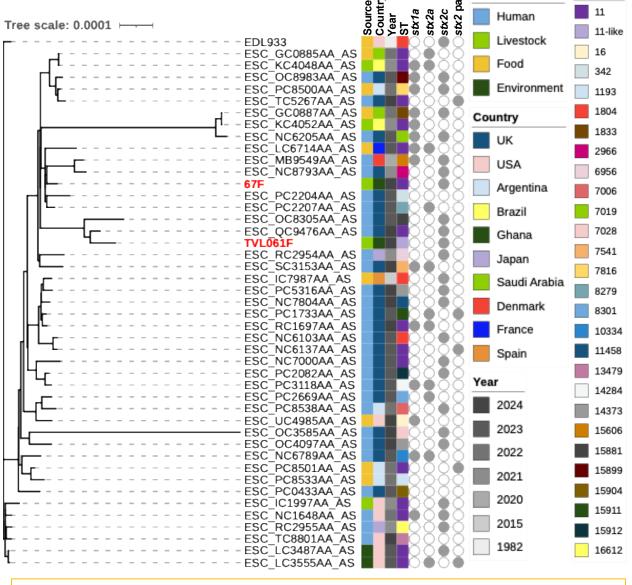

This study provides the first whole-genome analysis of STEC including O157:H7 serotype from livestock animals in Ghana. Our findings highlight the need for continued STEC surveillance and control under the One Health framework to inform public health in Ghana.

Table 2. Serotype and virulence profile of STEC.

Sample	TVL041F	TVL044F	TVL050F	TVL052F	TVL053F	TVL060F	TVL061F	67F			
Species	Sheep	Goat	Goat	Sheep	Sheep	Sheep	Goat	Goat			
Serotype	O38:H26	O43:H2	O43:H2	O43:H2	O38:H26	O38:H26	O157:H7	O157:H7			
ST	ST10	ST937	ST937	ST937	ST10	ST10	ST11	ST11-like			
Virulence genes linked to enterohemorrhagic E. coli											
chuA	-	-	-	-	-	-	+	+			
eae	-	-	-	-	-	-	+	+			
espA	-	-	-	-	-	-	+	+			
espB	-	-	-	-	-	-	+	+			
espl	+	-	-	-	+	+	-	-			
espJ	-	-	-	-	-	-	+	+			
espP	-	-	-	-	-	-	+	+			
espY2	-	-	-	-	-	-	+	+			
nleA	-	-	-	-	-	-	+	+			
nleB	-	-	-	-	-	-	+	+			
nleC	-	-	-	-	-	-	+	+			
stx1c	+	+	+	+	+	+	-	-			
stx2b	+	+	-	+	+	+	-	-			
stx2c	-	-	-	-	-	-	+	+			
tir	-	-	-	-	-	-	+	+			
toxB	-	-	-	-	-	-	+	+			

- STEC were classified into O38:H26, O43:H2, and O157:H7.
- No antimicrobial resistance genes were detected.
- stx2c and various virulence genes were exclusively detected in the O157:H7 serotype.

Figure 1. Maximum-likelihood phylogenetic tree of STEC serotype O157:H7.

- A wide range of STs has been reported among O157:H7, with stx2c gene being identified across diverse strains.
- Our isolates were related to clinical and food-derived strains from Europe, suggesting a potential for human infections and foodborne transmission.

Funding information: This work was partially supported by the Japan Agency for Medical Research and Development (AMED) under Grant Numbers JP24wm0125007 and JP24wm0225022, and the Japan Society for the Promotion of Science (JSPS) Bilateral Program Number JPJSBP120239911. This work was also supported by research funding from T.E.N. Ghana MV25 B.V.