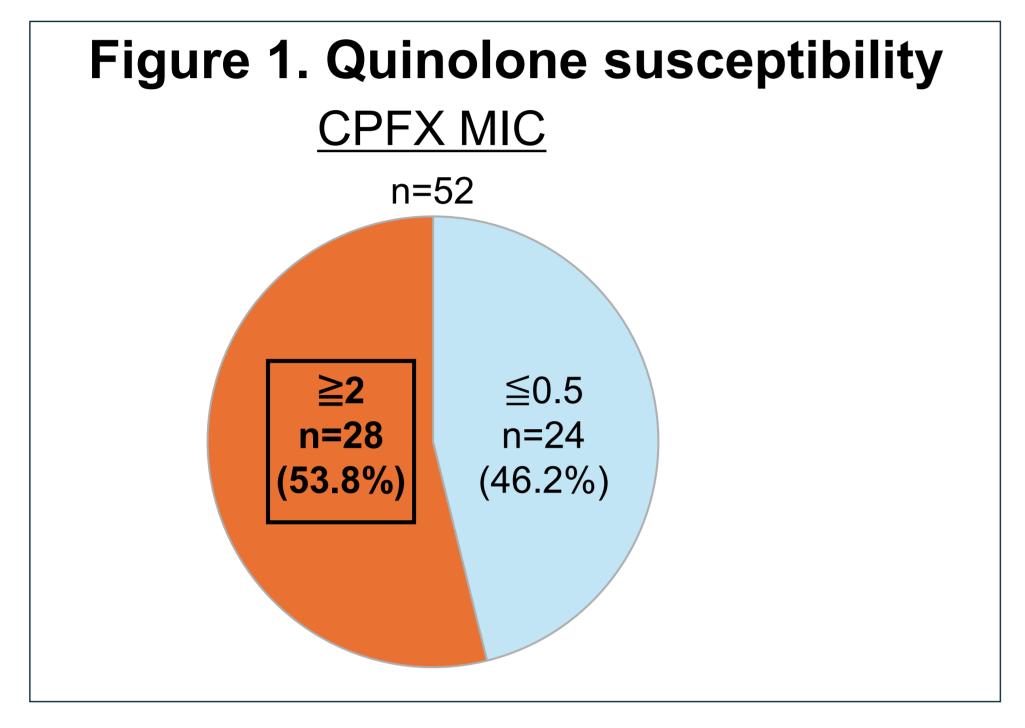
Emergence and Transmission of Quinolone-Non-Susceptible Haemophilus influenzae in a Geriatric Hospital in Japan

Fujiko Mitsumoto-Kaseida, Mika Murata, Daisuke Sasaki, Norihito Kaku, Kosuke Kosai, Hiroo Hasegawa, and Katsunori Yanagihara Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Background


RES-181

Methods

- >Quinolones generally exhibit potent antimicrobial activity against Haemophilus influenzae (H.influenzae).
- > The nationwide surveillance studies of bacterial respiratory pathogens in Japan from 2019 to 2023 have consistently reported >99% susceptibility of *H.influenzae* to levofloxacin $(LVFX)^{1)2}$.
- ➤ However, a persistently high prevalence of quinolone-nonsusceptible *H.influenzae* was observed in a geriatric hospital, raising concerns about nosocomial transmission.
- >We conducted an investigation to assess potential clonal spread.
- >52 H.influenzae isolates were collected (one per patient) at a geriatric hospital in Fukuoka Prefecture, Japan, between November 2018 and March 2020.
- >51 isolates were obtained from sputum and 1 from ocular discharge.
- >Antimicrobial susceptibility testing was performed by broth microdilution method according to CLSI M100-ED34.
- >Whole-genome sequencing was performed using the Miseq platform.
- ➤ Core-genome MLST (cgMLST) was performed using Ridom SeqSphere+, with *H.influenzae* 8P36H1 as the seed genome and 104 quiery genomes from NCBI GenBank, resulting in a scheme of 1,011 core loci.

Results

➤ All 52 isolates were non-typeable *H.influenzae* (NTHi).

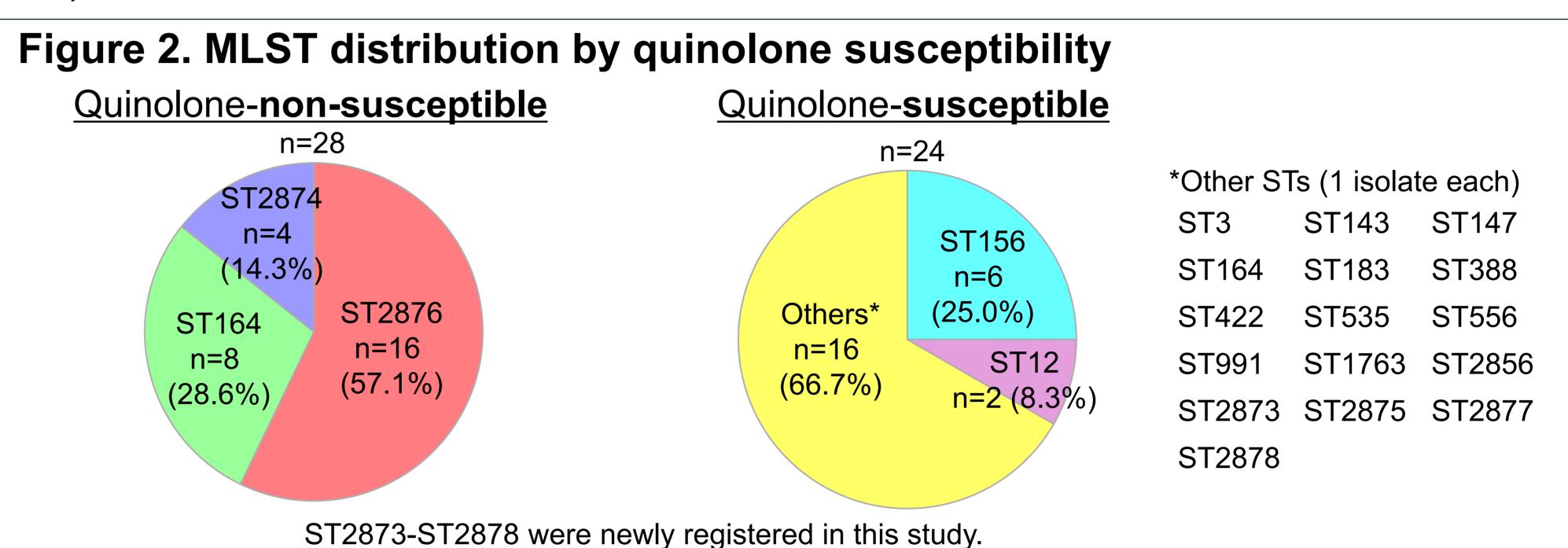
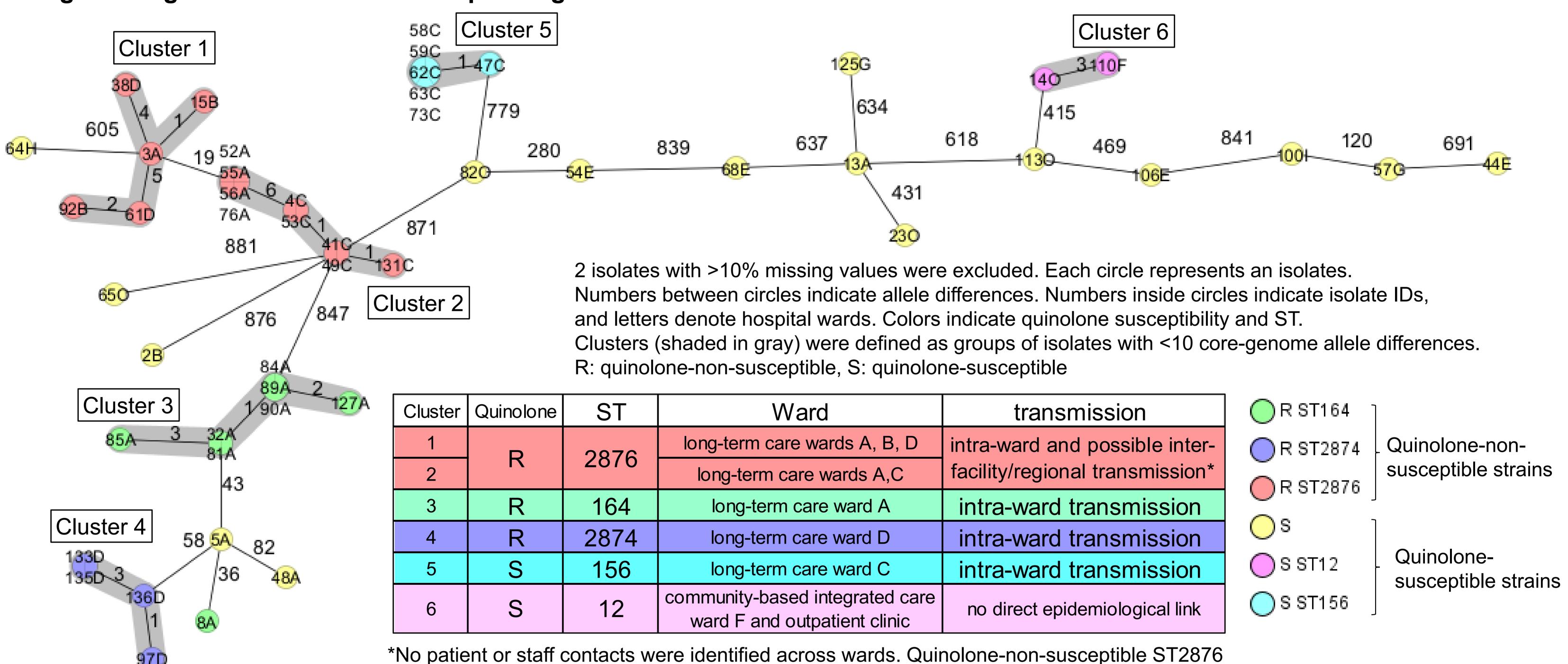



Figure 3. cgMLST based minimum spanning tree and cluster characteristics

may have spread within the regional healthcare network, including surrounding facilities. Table 1. Quinolone resistance-determining regions (QRDRs) and

penicillin-binding protein 3 (PBP3) amino acid substitutions

CPFX MIC	ST	n	Quinolone resistance			β-lactam resistance							
			GyrA		ParC		PBP3						
			Ser84	Asp88	Gly82	Ser84	Ser357	Met377	Ser385	Leu389	Arg517	Asn526	bla _{TEM}
≧2	2876	16	Leu	Asn	Asp	Arg	Asn	lle	Thr	Phe		Lys	_
	164	8	Leu	Asn	Asp	Arg	Asn	lle	Thr	Phe		Lys	_
	2874	4	Leu	Asn	Asp	Arg	Asn	lle	Thr	Phe		Lys	_
≦0.5	156	6					Asn	lle	Thr	Phe		Lys	_
	12	2										Lys	_
	3	1					Asn	lle	Thr	Phe		Lys	_
	143	1	Leu				Asn	lle	Thr	Phe		Lys	_
	147	1						lle				Lys	_
	164	1	Leu	Asn			Asn	lle	Thr	Phe		Lys	_
	183	1					Asn	lle	Thr	Phe	His		_
	388	1											+
	422	1					Asn	lle	Thr	Phe		Lys	
	535	1					Asn	lle	Thr	Phe		Lys	
	556	1						lle				Lys	
	991	1		Asn			Asn	lle	Thr	Phe		Lys	
	1763	1					Asn	lle	Thr	Phe		Lys	_
	2856	1					Asn	lle	Thr	Phe		Lys	_
	2873	1					Asn	lle	Thr	Phe		Lys	_
	2875	1					Asn	lle	Thr	Phe		Lys	_
	2877	1											
	2878	1	Leu			Arg	Asn	lle	Thr	Phe		Lys	_

All quinolone-non-susceptible isolates were high-BLNAR³⁾.

QRDR substitutions were found in 4 (16.7%) quinolone-susceptible isolates, suggesting elevated CPFX MICs.

Table 2. Patient characteristics by quinolone susceptibility

	Quinolone-susceptible (n=24)	Quinolone-non-susceptible (n=28)	P value
Age, years	75.3 ± 11.8	82.6 ± 13.7	0.023
Male	15 (62.5%)	11 (39.3%)	0.164
Long-term care ward	10 (41.7%)	27 (96.4%)	<0.001
Quinolone use within 90 days	2 (8.3%)	1 (3.6%)	0.590
β-lactam use within 90 days	11 (45.8%)	16 (57.1%)	0.578
Oral intake	12 (50.0%)	3 (10.7%)	0.002
ВМІ	19.4 ± 4.7	16.2 ± 3.7	0.009
Daily sputum suction*	10 (41.7%)	24 (85.7%)	0.001
Treated for pneumonia	20 (83.3%)	14 (50.0%)	0.019
30-day mortality	0	6 (21.4%)	0.025

Defined as requiring sputum suction ≤ 2 times per day for ≤ 3 consecutive days. Data are presented as mean \pm SD or number of patients (%).

Discussion & Conclusion

- > The high prevalence of quinolone-non-susceptible H.influenzae was mainly due to intra-ward transmission in long-term care wards.
- These isolates were more common in patients unable to take orally and requiring daily sputum suction, highlighting the need to review suction procedures and reinforce standard precautions. References

1) J Infect Chemother 29:731-743, 2023 2) J Infect Chemother 31:102781, 2025

3) Antimicrob Agents Chemother 45:1693-1699, 2001