

Prevalence of ESBL-producing Gram-Negative Bacteria in Residents of a Long-term-care Health Facility in Japan

S. Ono¹, M. Morita¹, M. Enomoto¹, I. Kanesaka¹, A. Kanayama Katsuse¹, M. Nogami², R. Hirauchi², T. Ochiai², I. Kobayashi¹

Toho Univ., Faculty of Nursing, Dept. of Infection Control and Prevention, Tokyo,

²Misato Care Center, Saitama, JAPAN

Background

The prevalence of extended-spectrum β -lactamase (ESBL)-producing Gram-Negative bacteria has been increasing in medical institutions in Japan.

However, the extent of ESBL-producing Gram-Negative bacterial colonization in elderly long-term care (LTC) facility residents remains largely unknown.

This study aimed to investigate the carriage rate of ESBL-producers in elderly residents of a LTC facility in Japan.

Table 1
Isolation frequencies and ESBL positivity rates of bacterial species from urine samples

(164 residents)

	(164 residents
Bacterial species	Number of detected strains(%)
Enterobacterales	255
Escherichia coli	140 (54.9)
Escherichia coli (ESBL-P)	69 (49.3)
Escherichia coli (ESBL-N)	71
Klebsiella pneumoniae	47 (18.4)
Klebsiella pneumoniae (ESBL-P)	9 (19.1)
Klebsiella pneumoniae (ESBL-N)	38
Klebsiella oxytoca	4
Klebsiella aerogenes	1
Proteus mirabilis	37 (14.5)
Proteus vulgaris	1
Providencia rattgeri	2
Morganella morganii	5
Citrobacter braakii	5
Citrobacter koseri	4
Citrobacter freundii	1
Enterobacter cloacae	4
Serratia marcescens	4
Staphylococcus aureus (MRSA)	1
Staphylococcus aureus (MSSA)	14
Non-glucose fermenting bacteria	20
Enterococcus spp.	48
Streptococcus spp.	28
Others	74

ESBL-P: ESBL-producing bacteria ESBL-N: ESBL-nonproducing bacteria

440

Methods

Patients and data collection

Between May 2024 and March 2025, disposable diapers and urine samples were collected from non-symptomatic elderly LTC residents.

Bacterial isolates were identified using conventional urine culture methodology.

Antimicrobial susceptibility testing and ESBL typing

Antimicrobial susceptibility testing was performed by CLSI agar dilution method. The CLSI disk test was used to detect ESBL production.

Genotyping of ESBL producing *E. coli* was performed by PCR to characterize genetic features.

Table 2
Antimicrobial susceptibilities of ESBL-producing and Non-ESBL-producing *E. coli* Isolates

	MIC (μg/ml)								
Antimicrobials	ESBL-producing strains (69 strains)				ESBL non-producing strain (71 strains)				
		range	MIC50	MIC90	I+R*%	range	MIC50	MIC90	I+R*%
	CEZ	> 64	>64	>64	100	0.5 - >64	1	4	14.1
	CMZ	0.25 - 8	1	2	0	0.25 - 32	0.5	2	1.4
	CAZ	≦0.06 - >64	8	>64	55.1	≦0.06 - 32	0.25	0.5	42.8
	CTRX	2 - > 64	64	>64	100	≦0.06 - 16	≦0.06	≦0.06	1.4
	MEPM	≦0.06	≦0.06	≦0.06	0	≦0.06	≦0.06	≦0.06	0
	LVFX	0.12 - 32	16	32	<mark>85.5</mark>	≦0.06 - >64	0.25	16	47.3
	AMK	2 - 32	4	16	1.4	1 - 16	4	8	0
	SMT/TMP	≦0.06 - >64	0.12	>64	21.7	≦0.06 - >64	≦0.06	>64	16.9
	PIPC/TAZ	0.25 - 8	1	4	0	0.12 - 64	1	4	0

* R; resistant, I; intermediate, according to CLSI M100-Ed31

Table 3
Antimicrobial susceptibilities of ESBL-producing and Non-ESBL-producing *K. pneumoniae* Isolates

	MIC (μg/ml)							
Antimicrobials	ESBL-produ	BL-producing strains (9 strains) ESBL non-producing strain (38	in(38 st	strains)				
	range	MIC50	MIC90	I+R*%	range	MIC50	MIC90	I+R*%
CEZ	> 64	> 64	> 64	100	1 - >64	0.5	64	18.4
CMZ	0.5 - 16	0.5	16	0	1 - 64	0.25	>64	8.4
CAZ	8 - 64	8	64	100	0.25 - 2	≦0.06	64	7.9
CTRX	64 - > 64	64	>64	100	≦0.06 – 0.25	≦0.06	64	7.9
MEPM	≦0.06	≦0.06	≦0.06	0	≦0.06	≦0.06	0.12	0
LVFX	1 - 2	≦0.06	22	55.6	≦0.06 – 0.12	≦0.06	0.5	0
AMK	2 - 8	2	8	0	2 - 4	2	8	0
SMT/TMP	4 - > 64	0.5	>64	55.6	0.25 – 0.5	≦0.06	> 64	2.6
PIPC/TAZ	2 - 16	1	16	0	2 - 8	0.12	> 64	5.3

* R; resistant, I; intermediate, according to CLSI M100-Ed31

Table 4 Genotypes of ESBL-producing *E. coli*

Total

ESBL type	No. of strains (%)
CTX-M-1 group	18 (26.1)
CTX-M-9 group	45 (65.2)
TEM variants	3 (4.3)
Unknown	3 (4.3)
Total	69

Results

- Of the 440 isolates from 162 residents, 225 were Enterobacterales with the following distribution:
 - · 140 (54.9%) Escherichia coli isolates, with 69 (49.3%) ESBL-producers.
 - · 47 (18.4%) Klebsiella pneumoniae isolates, with 9 (19.1%) ESBL-producers.
 - · 37 (14.5%) Proteus mirabilis isolates, with no ESBL-producers. (Table 1)
- Of the 69 ESBL-producing E. coli isolates, 59 (85.5%) showed resistance to fluoroquinolones.

(Table 2)

- Of the 9 ESBL-producing K. pneumoniae isolates, 5 (55.6%) showed resistance to fluoroguinolones and sulfamethoxazole-trimethoprim. (Table 3)
- The CTX-M9 group was the most prevalent CTX-M group gene in ESBL-producing *E. coli*. (Table 4)

Conclusion

A high carriage rate of ESBL-producers was observed. A significant proportion of ESBL-producing *E. coli* were fluoroquinolone resistant, highlighting the importance of infection control measures and affecting antimicrobial treatment strategies.

Toho University,
Faculty of Nursing,
Dept. of Infection Control and Prevention
4-16-20, Omori-Nishi Ota-ku Tokyo, JAPAN
Tel: +81-3-3762-9881
E-mail: seko.ono@med.toho-u.ac.jp