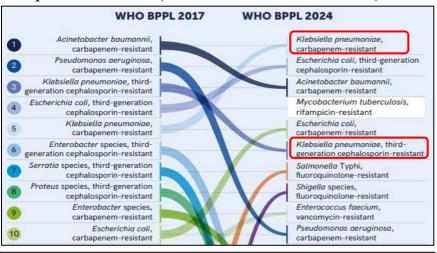


RES-138


Klebicins as novel therapeutics for the treatment of infections caused by drugresistant *Klebsiella pneumoniae*

Vivek Daniel Paul, Sukumar Hariharan and Team GangaGen

GangaGen Biotechnologies Pvt. Ltd., Bengaluru, India. www.gangagen.com

Introduction

- *Klebsiella pneumoniae* is a critical priority pathogen with high AMR burden and is a significant contributor of lung infections
- Carbapenem-resistance due to Metallo-beta lactamases (MBL) are prevalent in most LMICs with resistance rates touching 50%
- Emergence of Hypervirulent *K. pneumoniae* (hvKp) that are resistant to carbapenems have increased the risk of morbidity & mortality in hospitals (ECDC. 14 Feb 2024)
- *K. pneumoniae* is responsible for more than 700,000 deaths associated with AMR and with significant impact in LMICs (Lancet 2022; 399: 629–55)

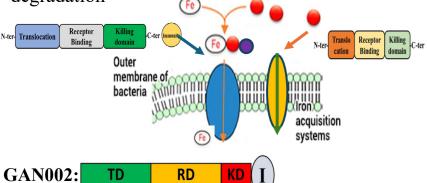
GangaGen's Bacteriocins Platform

Identify Pathogen of interest

Genome mining: Identify Bacteriocins sequences

Bioinformatics: Delineating conserved domains/functional boundaries

Domains: Receptor binding, Translocation, Killing


Identify novel sequences

Functional characterization of bacteriocins
Or Engineered Chimeric bacteriocins with desired
properties

Library of novel antibacterials

Klebicins: Protein antibiotics produced by *Klebsiella* spp.

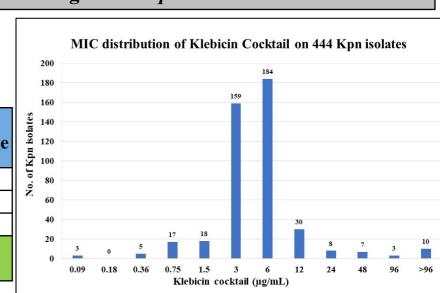
- ➤ Klebicins belong to a class of natural protein antibiotics called "Large bacteriocins" with mol.wt of 30-60 kDa
- ➤ Highly genus specific, multi-domain protein structures that specifically kill *Klebsiella* spp.
- ➤ Unique MoA: Cell surface receptor mediated cell entry, translocation to substrate compartment & killing via cell wall damage or nucleic acid degradation

GAN010: TD RD KD

TD: Translocation Domain
RD: Receptor Domain
KD: Killing Domain
I: Immunity

Killing mechanisms:

Pore formation


Peptidoglycan degradation Nucleases (RNase/DNase)

➤ We are developing a cocktail containing 3 different Klebicins

MICs of Klebicins and Klebicin cocktail on global K. pneumoniae isolates

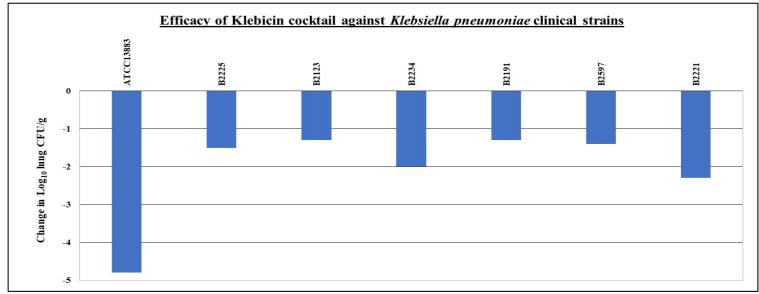
•444 clinical *K. pneumoniae* isolates from all parts of the globe, different body locations, drug-sensitive, drug-resistant and MDR strains

Klebicins	MIC ₅₀ (μg/mL)	MIC ₉₀ (μg/mL)	% Coverage
GAN002	8	>64	60
GAN010	4	>64	65
GAN011	4	32	85
Klebicin Cocktail (GAN002+010+011)	6	12	95

- ► K. pneumoniae from all geographies and sites of infection were sensitive to Klebicin cocktail
- ≻ Klebicin cocktail covered 95% of *K. pneumoniae* isolates with MIC of ≤12μg/mL total protein (<1 μM)
- ➤ No cross-resistance observed to any antibiotic class used
- ➤ Klebicins showed potent activity even on MDR strains that are resistant to carbapenems, CAZ-AVI and colistin

FoR studies with the Klebicin cocktail

- •Frequency of spontaneous resistance mutants to Klebicin cocktail was determined by FoR plating
- •Klebicin cocktail was incorporated in solid agar plates at 8X MICs
- •*Klebsiella pneumoniae* strains including hypervirulent and drug-resistant strains were screened at high inoculum of 10⁹ 10¹⁰ cells


Kpn Strains	Cocktail MIC (µg/mL)	Recovery Frequency with Klebicin cocktai at 8X MIC
ATCC13883	1	<1.8 x 10 ⁻⁹
B2191 (hvKp)	1	<2 x 10 ⁻⁹
B2192	1	<3.2 x 10 ⁻⁹
B2225	2	2.7 x 10 ⁻⁹
B2230	2	<4 x 10 ⁻⁹
B2242 (Cipro ^R)	4	<2.5 x 10 ⁻⁹

FoR of the Klebicin cocktail was ≤ 10⁻⁹ and no resistant mutants were recovered

>Low risk of resistance development

In vivo Efficacy of the Klebicin cocktail against Kpn clinical strains

- Non-clinical model: 26hr Neutropenic Lung Infection Model in BALB/c mice
- Challenge strains: Drug-sensitive, drug-resistant, MDR, hypervirulent
- Treatment regimen: Single IV dosage of Klebicin cocktail administered 2h after infection
- Efficacy Go criteria: ≥ 1 log lung CFU reduction

>Klebicin cocktail afforded significant lung bacterial load reduction with a single IV dose

Current status- Preclinical Development

- A cocktail of 3 Klebicins GAN002, GAN010 & GAN011 developed and optimized.
- Klebicins are amenable to high-yield recombinant protein expression in *E. coli*.
- The Klebicin cocktail is highly potent & covers 95% of *K. pneumoniae* isolates including MDR at MIC of <1 µM
- Low risk of resistance development to the Klebicin cocktail.
- Safety established for Klebicins and Klebicin cocktail by in vitro and in vivo assays.
- *In vivo* efficacy of the klebicin cocktail demonstrated in a neutropenic mouse model of lung infection using multiple strains of *K. pneumoniae* including MDR strains.

Acknowledgements: This study is supported by CARB-X grant (PCA No. 4500004357)