

Surveillance of the Antimicrobial-Resistant APCCMI2025 Bacteria in Nagasaki, Japan, 2014 to 2023

RES-103

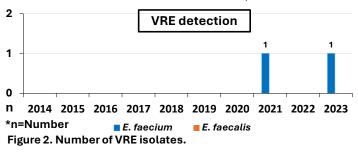
Takahisa Ishikawa¹, Yasuhide Kawamoto¹, Daisuke Sasaki¹, Kosuke Kosai², Norihiko Akamatsu¹, Katsunori Yanagihara^{1,2}

1. Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan 2. Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Background

Monitoring antimicrobial resistance (AMR) bacteria is essential for effective regional diagnostic and antimicrobial stewardship. This study analyzed the prevalence and trends of AMR bacteria in hospitals in Nagasaki, Japan.

Method


We collected and analyzed data on AMR bacteria from 17 hospitals in Nagasaki, Japan, between 2014 and 2023. The study focused on the following AMR bacteria: methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococci (VRE), extended-spectrum βlactamase (ESBL) producing bacteria, multidrug-resistant P. aeruginosa (MDRP), carbapenem-resistant Enterobacteriaceae (CRE), and carbapenemase-producing Enterobacteriaceae (CPE). As shown in the table on the right, the criteria for AMR identification are presented.

Antimicrobial- resistant	Bacterial Strains	MIC(μg/mL) Criteria
MRSA	S. aureus	MPIPC ≥ 4 or CFX ≥ 8
VRE	E. faecalis, E. faecium	VCM ≧ 32
PRSP	S. pneumoniae	PCG ≧ 0.125
ESBL	E. coli, K. pneumoniae K. oxytoca, P. mirabilis	According to CLSI M100-S20
MDRP	P. aeruginosa	IPM or MEPM \ge 16 and AMK \ge 32 and LVFX \ge 8 or CPFX \ge 4
CRE	Enterobacterales	MEPM \ge 2 or IPM \ge 2 and CMZ \ge 64
СРЕ	Enterobacterales	Positive by carbapenemase gene detection or phenotypic testing

70.0 MRSA detection 60.0 50.8 49.3 44.8 47.3 46.3 44.8 42.8 50.0 40.0 30.0 MRSA 20.0 10.0 0.0 % 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Figure 1. Trends in MRSA detection rates in Nagasaki.

MRSA detection rate (%) = Number of MRSA isolates / (Number of MRSA

isolates + Number of MSSA isolates).

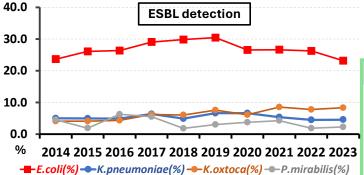


Figure 3. Trends in ESBL detection rates in Nagasaki.

Detection rate (%) = Number of ESBL-producing isolates / Total number of isolates of the corresponding species

- 1. Japan Nosocomial Infections Surveillance (JANIS), Clinical Laboratory Division. (2023). Annual Open Report 2023 (All Facilities). Tokyo: Ministry of Health, Labour and Welfare. Retrieved September 18
- 2. Ng, R. W. Y., et al. (2025). Global prevalence of human intestinal carriage of ESBL-producing Escherichia coli: A systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 80(4), 1021-1030.
- 3. National Institute for Infectious Diseases, Japan. Table 3. Infectious Agents Surveillance Report (IASR). 2025 Feb;46:23-24.

Corresponding author: Takahisa Ishikawa Email: i-takahisa@nagasaki-u.ac.jp Tel: +81-70-4193-7498 Address: Department of Laboratory Medicine, Nagasaki University Hospital. 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan

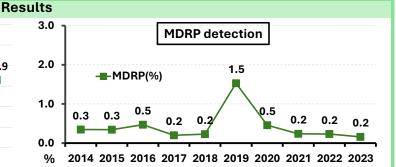


Figure 4. Trends in MDRP detection rates in Nagasaki.

Detection rate (%) = Number of MDRP isolates / Total number of Pseudomonas aeruginosa isolates

Table 2. Proportion of CRE and CPE isolates by bacterial species.

Bacteria	CRE (n)	CPE (n)	Proportion of CPE among CRE (%)
Enterobacter spp.	665	42	6.3
E. coli	36	5	13.9
K. pneumoniae	38	6	15.8
Proteus spp.	4	0	0.0
Citrobacter spp.	48	8	16.7
Others	324	4	1.2
Total	1115	65	5.8
·			

Note: Klebsiella aerogenes was included in Enterobacter spp.

Discussion

- · The downward trend in MRSA proportion likely reflects the cumulative effects of hospital infection control programs.
- Compared with Japan Nosocomial Infections Surveillance (JANIS) (JANIS) data reporting approximately 1,000 VRE cases annually in Japan(2023)1), the prevalence observed in this study was relatively low.
- The proportion of ESBL-producing E. coli in Nagasaki rose from 23.7% in 2014 to 30.5% in 2019, then declined to 23.2% in 2023. The peak prevalence in Nagasaki was slightly higher than the global pooled prevalence of 25-28%, which continues to increase in many regions²⁾.
- MDRP represented only a small fraction of isolates. In Japan,
- According to the National Institute of Health and Crisis Management (JIHS) in Japan, the national detection rate of Enterobacter spp. among CRE was 69.4% in 2023³⁾, which was not substantially different from the proportion observed in Nagasaki during the period from 2014 to 2023, where 665 out of 1,115 isolates (59.6%) were identified as CRE.

Conclusion

We identified the trends in the isolation of antimicrobial-resistant bacteria in Nagasaki, Japan over the past decade (2014-2023). Ongoing surveillance of regional drug-resistant bacteria remains imperative.