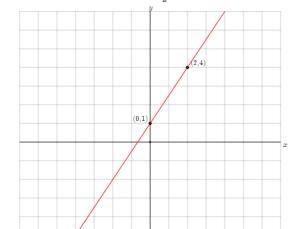


Statistical Properties of A Least Squares Method for Linear Regression Analysis


Soichi Takeishi MD, Tatsuo Inoue MD, Koichi Miyamura MD, PhD

Internal medicine, Inuyama Chuo General Hospital

Introduction

Partial regression coefficients (β) indicate the number of changes in response variables per an increase in covariates by a unit quantity, which is 1, for linear regression analysis.

2点(0,1)と(2,4)を通る直線が $y=\frac{3}{2}x+1$ のグラフである。

The origin of partial regression coefficients

Slope of linear function

The number of changes of y per an increase in x by a unit quantity, which is 1, is calculated from the given 2 coordinates.

Slope of linear function depends on the difference in x and y in the 2 coordinates.

A least squares method is used to calculate partial regression coefficients.

Regression line:
$$\hat{y} = \hat{\alpha} + \hat{\beta} x$$

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

$$\hat{\beta} = \frac{S_{xy}}{S^2}$$

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} \qquad \hat{\beta} = \frac{S_{xy}}{S_{x}^{2}} \qquad S_{x}^{2} = \sum (x - \overline{x})^{2}, S_{xy} = \sum (x - \overline{x})(y - \overline{y})$$

Partial regression coefficients depend on differences

1. between covariates and a mean covariate

and

2. between response variables and a mean response variable

For example, when "the covariates" are replaced with "the covariates -10", "the mean covariates" are replaced with "the mean covariates -10".

$$(x-10)-(\bar{x}-10)=(x-\bar{x})$$

The calculated partial regression coefficients are identical. We examined this statistical properties using simulation data.

Method

Case 1

A covariate: "duration from an admission date (a date of onset) to 'an enforcement date of PCR for COVID-19 detection' (PCR date)" (Admission \rightarrow PCR)

A response variable: threshold cycle values (CT values) of the PCR

Case 2

A covariate: "duration from a ward transfer permission date (defined as ten days after admission) to PCR date" (Transfer permission → PCR)

A response variable: CT values of the PCR

We calculated partial regression coefficients for the two cases using a least squares method (n = 10).

Results

Case 1	Admission \rightarrow PCR (x_1)	\bar{x}_1	$(x_1 - \bar{x}_1)^2$	CT value of PCR (y)	\bar{y}	$(x_1 - \bar{x}_1)(y - \bar{y})$	$(x_2 - \bar{x}_2)(y - \bar{y})$	
	11	15.5	20.25	31		20.25	20.25	
	12		12.25	33		8.75	8.75	
	13		6.25	34		3.75	3.75	
	14		2.25	32	35.5	5.25	5.25	
	15		0.25	35		0.25	0.25	
	16		0.25	36		0.25	0.25	
	17		2.25	37		2.25	2.25	
	18		6.25	39		8.75	8.75	
	19		12.25	38		8.75	8.75	
	20		20.25	40		20.25	20.25	
Total			Sx_1^2 : 82.5			Sx ₁ y: 78.5	Sx ₂ y: 78.5	
Case 2	Transfer permission \rightarrow PCR (x ₂)	\bar{x}_2	$(x_2 - \bar{x}_2)^2$	$\hat{\beta}_1$: Sx_1y/Sx_1^2	$\widehat{\alpha}_1$	$\hat{\beta}_2$: Sx_2y/Sx_2^2	$\widehat{\alpha}_2$	
	1		20.25	0.95	20.75	0.95	30.27	
	2	5.5	12.25					
	3		6.25	The covariates in Case 1 were all "10 + the covariates in Case 2".				
	4		2.25	The mean of covariates in Case 1 was "10 + the mean of covariates in Case 2".				
	5		0.25	The differences between the covariates and the mean covariate, as well as the partial regression coefficients, were identical in Cases 1 and 2. The constant term (α) in Cases 1 and 2 were different.				
	6		0.25					
	7		2.25					
	8		6.25					
	9		12.25	i ne constant term (c	ases I and 2 wer	were different.		
	10		20.25					
Total			Sx_2^2 : 82.5					

Conclusion