

Catheter-Related Bloodstream Infection Caused by Chryseobacterium arthrosphaerae: The First Reported Case

Takano T, Kunishima H

CAS-077

Department of Infectious Diseases, St. Marianna University School of Medicine - Kawasaki (Japan)

Introduction

- Chryseobacterium species are non-fermenting, Gramnegative bacilli commonly found in environmental sources. Although usually considered opportunistic pathogens, they have been increasingly implicated in healthcare-associated infections, particularly in immunocompromised patients or those with indwelling catheters.
- Here, we report the first documented case of catheter-related bloodstream infection (CRBSI) caused by Chryseobacterium arthrosphaerae.

Colony morphology of *C. arthrosphaerae* on blood agar Smooth, circular, convex colonies with opaque to slightly translucent appearance, producing a non-diffusible yellow–orange pigment and occasionally a fruity odor.

Case Presentation

Time course

On admission

Day 11

Day 30

Day 61

- 50s woman admitted for pain control (metastatic breast cancer)
- History type 2 diabetes (HbA1c 6.1%), neurogenic bladder (vertebral metastasis)
- Pyelonephritis, septic shock (E. coli)
 - → Meropenem × 10d
- PICC in place for 21d Cultures *C. arthros*
- Cultures *C. arthrosphaerae* (catheter tip, 2 blood cultures)

Recurrent septic shock,

- → CRBSI suspected
- Treatment TMP-SMX →PIPC/TAZ (14d)
- Clinical improvement, discharged

Clinical course

- A woman in her 50s with metastatic breast cancer was admitted for pain management. Past history included type 2
 diabetes and neurogenic bladder due to vertebral metastasis.
- On day 11, she developed *E. coli* pyelonephritis with septic shock, treated with meropenem for 10 days.
- On day 30, she had recurrent septic shock; as her PICC had been in place for 21 days, CRBSI was suspected.
 Cultures from the catheter tip and blood grew *C. arthrosphaerae*, which was identified by MALDI-TOF MS. She was treated with TMP-SMX, later switched to piperacillin-tazobactam, for a total of 14 days.

Discussion

Antimicrobial Resistance in *C. arthrosphaerae*

[Potential resistance mechanisms]

Genomic analyses of *Chryseobacterium* species, including *C. arthrosphaerae*, suggest several mechanisms that may contribute to their broad resistance patterns:

- Chromosomally encoded class A and class B β -lactamases \rightarrow confer resistance to β -lactams and carbapenems.
 - Liang CY, et al. Genes (Basel). 2019;10(4):309. Zhu L, et al. BMC Microbiol. 2024 Mar 8;24(1):80.
- Efflux pump systems → reduce intracellular concentrations of fluoroquinolones, tetracyclines, and other drug classes.

Liang CY, et al. Genes (Basel). 2019;10(4):309.

 Aminoglycoside-modifying enzymes → contribute to intrinsic resistance against aminoglycosides.

Zhu L, et al. BMC Microbiol. 2024 Mar 8;24(1):80.

 Biofilm formation on indwelling devices → enhances persistence and tolerance to antimicrobial therapy.

Im SJ, et al. Medicine (Baltimore). 2020 Aug 21;99(34):e21751

Conclusion

To date, only four cases including ours have reported antimicrobial susceptibility data. Further accumulation of clinical characteristics and susceptibility profiles of *C. arthrosphaerae* is warranted.

Antimicrobial susceptibility of C. arthrosphaerae

Antimicropial susceptibility of <i>C. arthrosphaerae</i>				
	Liang 2019	lm 2020	Zhu 2024	This study
	MIC S/I/R	MIC S/I/R	MIC S/I/R	MIC S/I/R
Piperacillin	>64 R	≥128 R	≥128 R	64 I
Piperacillin-	>128/4 R	≥128 R	≤16/4 S	≤ 16 S
tazobactam	/120/4 K	≥120 K	≥10/4 3	≥10 3
Ceftazidime	>16 R	≥64 R	≤8 S	8
Cefepime	>32 R	≥64 R	≤ 8 S	>16 R
Aztreonam	>16 R	≥64 R	≤8 S	NA
Imipenem	>8 R	≥16 R	≤4 S	>8 R
Meropenem	>8 R	≥16 R	≤4 S	8 I
Gentamicin	>8 R	≥16 R	≥16 R	>8 R
Tobramycin	>8 R	NA NA	≥16 R	>8 R
Amikacin	>32 R	≥64 R	≥64 R	>32 R
Minocycline	>8 R	≤1 S	≥16 R	≤ 4 S
Tigecycline	>8 R	4 S	NA NA	NA NA
Ciprofloxacin	>2 R	1 S	≥4 R	≤ 0.25 S
Levofloxacin	>8 R	NA NA	≥8 R	0.5 S
Trimethoprim-	>4/76 R	≤20 S	≥4/76 R	≤2 S
sulfame tho xazole				

Breakpoints for *Chryseobacterium arthrosphaerae* are not defined; interpretations were based on CLSI M100-Ed35 criteria for non-fermenting Gram-negative bacilli. Liang CY, et al. Genes (Basel). 2019;10(4):309.Im SJ, et al. Medicine (Baltimore). 2020 Aug 21;99(34):e21751. Zhu L, et al. BMC Microbiol. 2024 Mar 8;24(1):80.