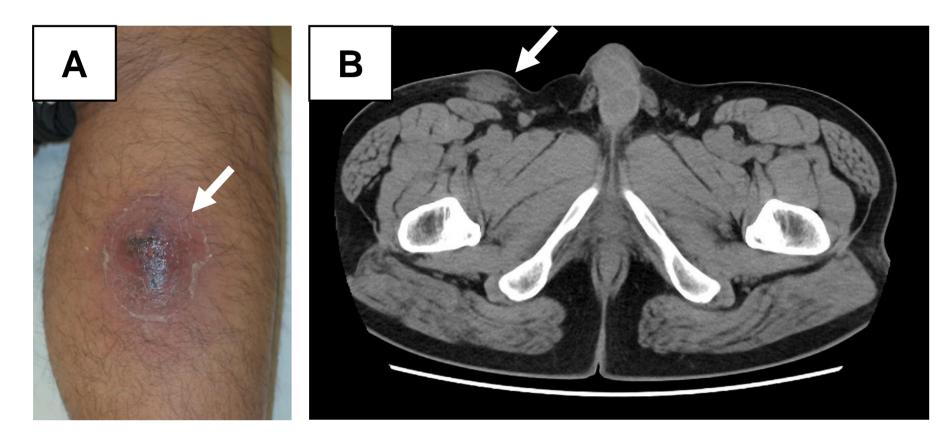


A Case Report of a Skin Infection Caused by Mycobacterium mageritense in a Healthy Patient in Japan

Poowadon Muenraya¹⁾, Shinnosuke Fukushima^{1),2)}, Jumpei Uchiyama¹⁾, Hideharu Hagiya²⁾ ¹⁾Okayama University, ²⁾Okayama University Hospital


Introduction

Mycobacterium mageritense (newly classified as Mycolicibacterium mageritense) is a rapidly growing nontuberculous mycobacterium (NTM) that rarely causes skin infections in both immunocompromised and healthy individuals. Here, we report a case of skin infection caused by *M. mageritense* in a healthy adult patient, with the results of genomic characterization.

Case presentation

1. Patient symptoms

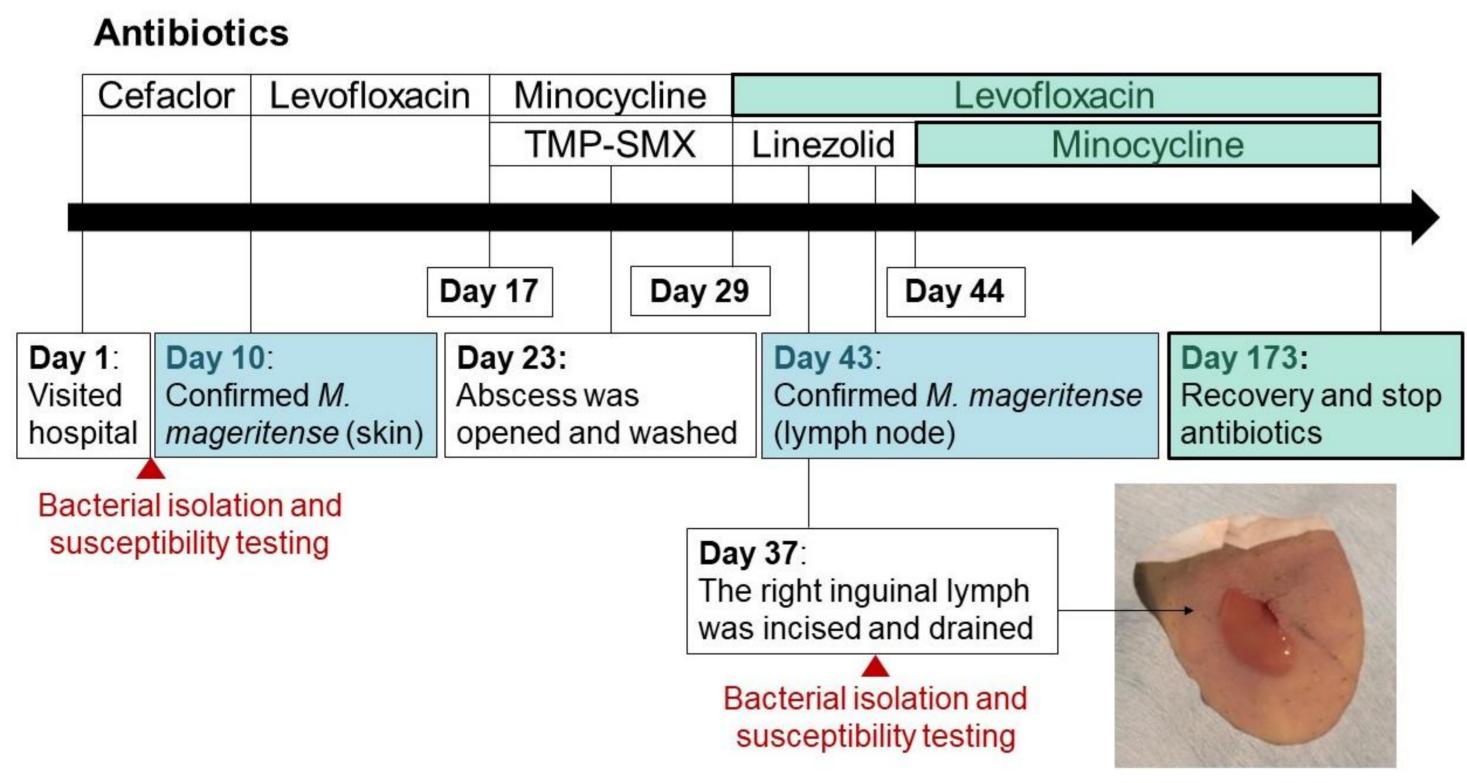

A 48-year-old healthy male patient presented with a persistent skin infection on his right lower leg (Fig 1A), accompanied by inguinal lymphadenitis (Fig 1B). Bacterial cultures from both infected foci detected a mycobacterium, which was identified as M. mageritense using mass spectrometry.

Figure 1: Skin infection on right lower leg (**A**) and right inguinal lymphadenitis (**B**).

2. Therapeutic course and outcome

During treatment (Fig 2), the abscess was surgically opened, repeatedly irrigated, and treated daily with povidone-iodine-sugar paste. Various antibiotic regimens were administered and adjusted based on previous case reports and antibiotic susceptibility testing (Table 1). The isolated bacteria from the skin and inguinal lymph showed resistance to tobramycin, trimethoprim-sulfamethoxazole, and clarithromycin. Although linezolid was susceptible, it was discontinued due to hepatotoxicity. Finally, the patient was treated mostly with a combination of levofloxacin and minocycline, which resulted in gradual improvement and recovery after four months of therapy.

Skin lesion

Figure 2: Therapeutic course.

Table 1: The antibiotic susceptibility testing of isolated *M. mageritense*.

Antibiotics	MIC (μg/mL)	Susceptibility		
AMK	16	S		
TOB	>16	R		
IPM	<=2	S		
FPM	4	n.d.		
MEPM	4	S		
LVFX	<=1	n.d.		
MOFX	<=0.25	S		
STFX	<=0.25	n.d.		
TMP-SMX	80	R		
DOXY	2			
LZD	2	S		
CZM	1	n.d.		
AZT	>64	n.d.		
CAM	>64	R		

MIC = minimum inhibitory concentration, S = susceptible, R = resistance, I = intermediate, n.d. = not determined

Antibiotic abbreviations

AMK = amikacin, TOB = tobramycin, IPM = imipenem, FPM = faropenem, MEPM = meropenem, LVFX = levofloxacin, MOFX = moxifloxacin, STFX = sitafloxacin, GFLX = gatifloxacin, OFX = ofloxacin, TMP-SMX = trimethoprimsulfamethoxazole, DOXY = doxycycline, TG = tigecycline, MINO = minocycline, LZD = linezolid, TDZ = tedizolid, CZM = clofazimine, CFX = cefoxitin, CTX = ceftriaxone, CFP = cefepime, AZT = azithromycin, CAM = clarithromycin

Conclusion

This case highlights that the rare NTM, *M. mageritense*, can cause a skin infection in a healthy patient. The patient was successfully treated through wound management and antibiotic therapy. *M. mageritense* shows resistance to macrolides, which are often used for NTM infections. More clinical case studies are required to understand this infection.

Characterization of *M. mageritense*

Antibiotic resistance genes were identified and compared with five other M. mageritense strains deposited on the NCBI database. We found erm(40), aac(2')-lb, tet(V), RbpA, dfrA3, and sul4 genes in all M. mageritense strains (Fig 3). These results were consistent with the resistance to TOB, TMP-SMX, and CAM (Table 1). Core genome analysis revealed three distinct clusters based on isolation source and country, including clinical Spanish strains, clinical Japanese strains, and environmental strains (Fig 3).

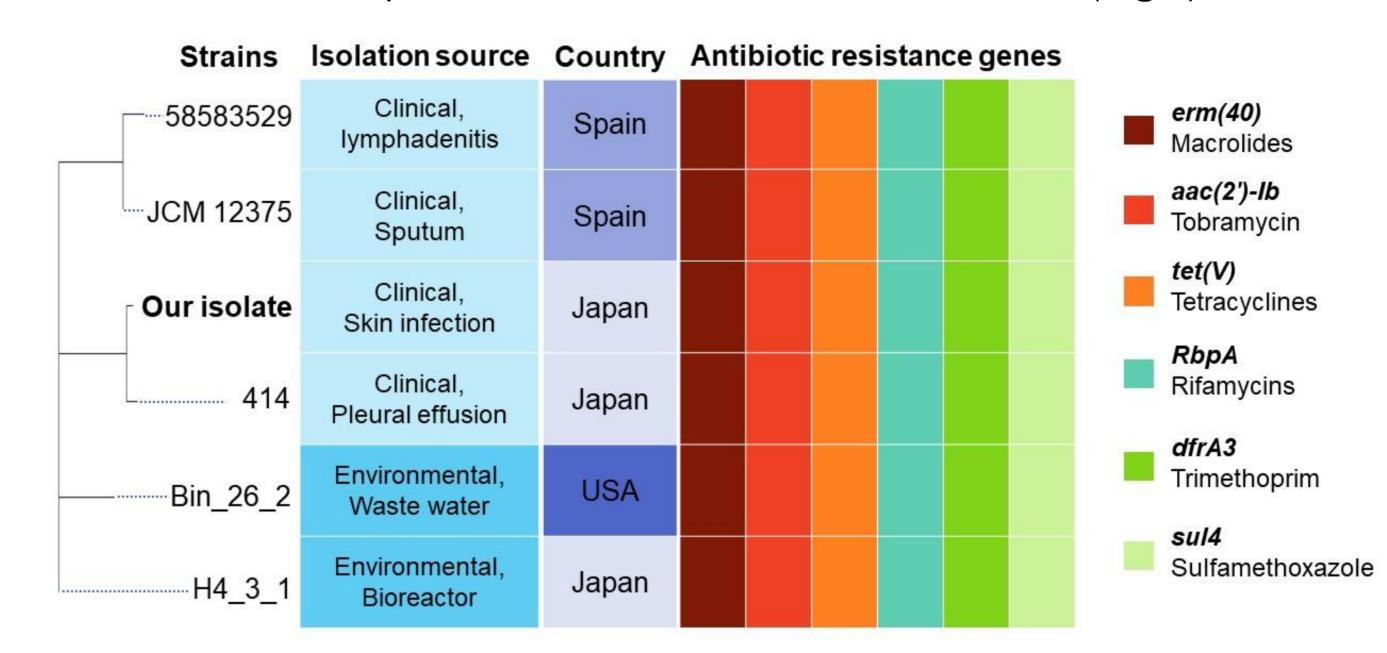


Figure 3: Antibiotic resistance gene identification, and core-genome phylogeny.

Discussion

Several case reports demonstrated skin infections caused by M. mageritense even in healthy individuals (Table 2). Surgical intervention and antibiotic therapy successfully treated various patients for a duration ranging from 2 to 6 months. Fluoroquinolones were susceptible and effective against *M. mageritense* skin infection. Although **clarithromycin** is the first-line antibiotic for rapidly growing NTM infections, it is consistently resisted by M. mageritense.

Table 2: The case reports of skin infection caused by *M. mageritense*.

Age	(y)/	Immune	Country, years	Antibiotic susceptibility			Trootmont	Surgery	Duration
Sex	ex	status		S	ı	R	Treatment	Surgery	(m)
43/	F ^[1]	НС	USA, 2004	LVFX, AMK, IPM, LZD, SMX	CFX	CAM	LVFX, TMP- SMX	No	3
56/	'F ^[1]	HC	USA, 2004	GFLX, AMK, CFX, IPM, LZD, SMX	-	CAM	GFLX	No	2
70/	M ^[2]	IC	Japan, 2018	LVFX, MINO	-	CAM	LVFX, MINO	No	9
48/	M ^[3]	НС	USA, 2020	MOFX, MINO	-	-	MOFX, MINO	No	3
38/	M ^[4]	НС	India, 2020	LVFX, MOFX, AMK, CFX, IPM, LZD, DOXY, TG	-	CAM, CTX, CFP	LVFX, AMK, LZD, TMP- SMX	Yes	6
40/	F ^[5]	IC	USA, 2021	CPFX, AMK, CFX, IPM, LZD	-	CAM, TMP-SMX	CPFX, AMK, IPM, TDZ	Yes	4
66/	F ^[6]	НС	India, 2021	MOFX, DOXY, AMK	-	_	OFX, DOXY	Yes	2
25/	M ^[7]	НС	Australia, 2021	CPFX, MOFX, TMP-SMX, LZD	-	CAM, TOB, AMK	CPFX, TMP- SMX	No	3
49/	/F [8]	IC	Japan, 2024	LVFX, MOFX, IPM, LZD	AMK, DOXY, MEPM	CAM, TOB, TMP-SMX	LVFX, DOXY	Yes	6
51/	F[9]	HC	Japan, 2025	LVFX, MOFX, AMK, LZD, DOXY	-	CAM, TOB, TMP-SMX, MEPM	LVFX, DOXY	Yes	4
O ca	ur se	HC	Japan, 2025	MOFX, AMK, IPM, MEPM, LZD	DOXY	CAM, TMP- SMX, TOB	LVFX, MINO	Yes	4

F = female, M = male, HC = healthy/immunocompetent, IC = immunocompromised, y = years, m = months

References

[1] Gira, A. K., Reisenauer, A. H., Hammock, L., Nadiminti, U., Macy, J. T., Reeves, A., . . . Nolte, F. S. (2004). Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J Clin Microbiol, 42(4), 1813-1817. [2] Oiwa, T., Murata, T., Honda, T., Nakano, S., & Kabashima, K. (2018). A case of subcutaneous infection with Mycobacterium mageritense identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Acta Derm Venereol, 98(10), 987-988.

Dermatol Online J, 26(4). [4] Singhal, L., Bhagat, A., Gupta, M., Gulati, N., Dalal, A. K., & Chander, J. (2020). Multiple recalcitrant draining sinuses caused by Mycobacterium mageritense following laparoscopic cholecystectomy: A case report and brief review of literature. Jpn J Infect Dis, 73(3), 256-258.

[3] Park, A. M., Hathaway, N. E., & Wright, K. T. (2020). Mycobacterium mageritense tattoo infection: a known complication with a novel species.

[5] Joya, C. A., Deegan, C., & Gleeson, T. D. (2021). Mycobacterium mageritense infection following mastectomy and breast reconstruction requiring triple antibiotic therapy and surgical debridement. BMJ Case Rep, 14(2), e237618. [6] Turuk, J., Das, D., Rout, S. S., Praharaj, A. K., Bag, L., & Pati, S. (2021). Mycobacterium mageritense causing surgical site infection: Case report

from Odisha, India. Indian J Med Microbiol, 39(3), 389-391. [7] Lobo, Y., & Lun, K. (2021). Tattoo-associated cutaneous *Mycobacterium mageritense* infection: A case report and brief review of the literature.

Case Rep Dermatol, 13(3), 513-520. [8] Akazawa, N., Itoh, N., Ishibana, Y., Murakami, H., & Okumura, S. (2024). Successful management of surgical site infection caused by

Mycobacterium mageritense in a breast cancer patient. J Infect Chemother, 30(8), 800-805. [9] Suzuki, A., Komiya, T., Fujita, H., Shimada, K., Nonaka, M., Hanano, M., . . . Matsumura, H. (2025). Surgical site infection owing to Mycobacterium mageritense after immediate breast reconstruction using a deep inferior epigastric perforator flap. Plast Reconstr Surg Glob Open, 13(6), e6823.