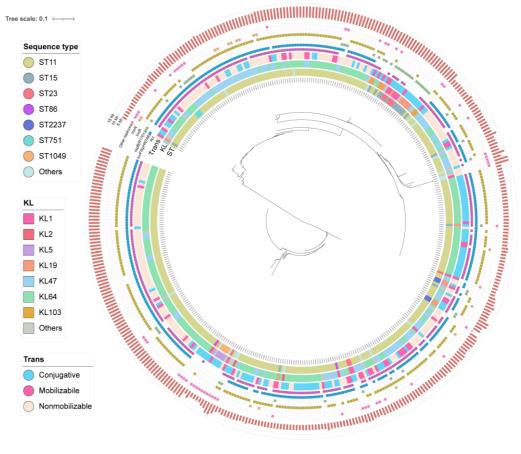
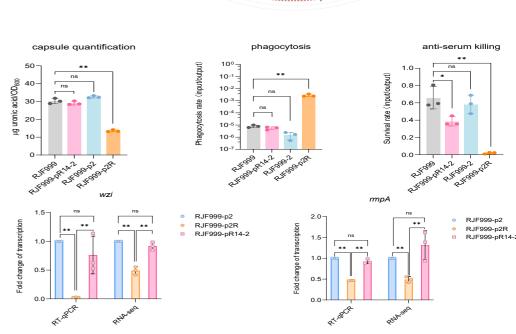

Plasmid carrying tandem amplification of *bla*_{KPC-2} mediates carbapenem resistance with minimal fitness cost in hypervirulent *Klebsiella pneumoniae*


Yanyan Lu¹, Jianfeng Zhang¹, Jianping Jiang¹, Xiaobin Li², Yu Tang³, Xiaoli Wang⁴, Hongping Qu⁴, Yanping Xu⁵, Jieming Qu⁵, Yiyi Hu¹, Zhewei Sun¹, Xin Lan¹, Yujia Wang¹, Leilei Wang¹, Liang Chen⁶, Xiaogang Xu¹, Qinglan Guo¹, Minggui Wang^{1*}


- 1. Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- 2. Department of Pulmonary and Critical Care Medicine, Zhuhai People's Hospital, Zhuhai, China
- 3. Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- 4、Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 5. Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 6. Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA

ABSTRACT

Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) derived from hypervirulent *K. pneumoniae* (hvKP) acquiring a carbapenem-resistant plasmid, usually remains susceptible to carbapenems or exhibits loss of hypervirulence due to the substantial fitness burden. Here, we demonstrate that a KPC plasmid bearing tandem gene amplification (TGA) of bla_{KPC-2} can transfer into hvKP, mediating changeable meropenem resistance ranging from susceptible to resistant. Meropenem resistance conferred by *bla*_{KPC-2} TGA incurs a rare reduction in capsule production. Isolates harboring the *bla*_{KPC-2} TGA plasmid can maintain hypervirulence while exhibiting meropenem resistance, leading to poorer outcomes of meropenem treatment in a mouse infection model, comparing with isolates bearing a simplex KPC plasmid. The formation of *bla*_{KPC-2} TGA necessitates an IS26- bla_{KPC-2} -IS26 structure. 42.0% (394/939) of KPC plasmids including 57.1% (8/14) of plasmids in ST23 CR-hvKP in GenBank harbor IS26- bla_{KPC-2} -IS26-like structures. Our findings highlight that IS26- bla_{KPC-2} -IS26 structure-mediated *bla*_{KPC-2} TGA presents a critical threat in clinical practice and requires urgent and effective surveillance.

